
Orakai: A Decentralized Oracle Framework

for AI Inference on the Blockchain

Abstract

Orakai introduces a decentralized oracle system optimized for AI inference integration

within blockchain ecosystems. Unlike traditional data oracles, Orakai handles dynamic,

non-deterministic AI-generated responses using a quorum-based response model,

verifiable worker selection, and decentralized inference execution. This paper

presents the full system architecture, protocol interactions, and a walkthrough of an

end-to-end query using a consumer smart contract for English-to-French translation.

1. Introduction

Smart contracts are inherently deterministic and sandboxed, limiting their ability to

interact with external, probabilistic systems like large language models (LLMs).

Traditional oracles provide static data feeds (e.g., price feeds), which are

inadequate for open-ended, subjective queries such as translations, sentiment

classification, summarization, and more.

Orakai fills this gap by serving as a decentralized inference oracle. It allows any

on-chain contract to request an LLM inference task and obtain a verifiably aggregated

result from multiple independent AI agents, ensuring trust-minimized, censorship-

resistant computation.

2. System Overview

The Orakai system consists of six primary components:

Orakai Smart Contract (Web3 core)

Orakai Frontend (UI layer)

Orakai Backend (Web2 coordination layer)

Worker Node (LLM inference executor)

Aggregator Node (result verifier and finalizer)

ExampleConsumerContract (example usage)

The following sections detail each of these components with a technical walkthrough.

3. Orakai Smart Contract

Overview

The Orakai.sol contract is the on-chain gateway between consumers and the

decentralized AI worker network. It is written in Solidity and deployed on an EVM-

compatible chain.

Responsibilities

Accepts inference requests (createQuery(string calldata prompt, string calldata

taskType))

Emits QueryCreated event to signal job creation

Tracks selected worker addresses via Randamu

Accepts worker-signed results (submitWorkerResponse(bytes32 queryId, string

memory resultHash, bytes signature))

Waits for a threshold number (e.g. 3 of 5) of matching responses

Calls the Aggregator for quorum validation

Emits QueryFinalized(queryId, finalResultHash) on success

Data Structures

struct Query {

 address consumer;

 string prompt;

 string taskType;

 address[] assignedWorkers;

 mapping(address => string) responses;

 uint quorumCount;

}

Why This Matters

This contract acts as the canonical record of truth. It provides tamper-proof

recording of the query lifecycle and guarantees that only majority-agreed outputs are

accepted.

4. Orakai Frontend

Overview

The frontend is a TypeScript/React application that allows users to create and track

AI queries. It interfaces with MetaMask, the Orakai smart contract, and the backend

API.

Features

Prompt input and task selection

Wallet signature and verification

Real-time query status updates

Result display with provenance metadata (e.g., workers, timestamps, hashes)

Why This Matters

While Orakai is backend- and smart-contract-driven, the frontend abstracts away

protocol complexity for the user, providing a clean UX to interact with decentralized

inference.

5. Orakai Backend

Overview

Built in Go, the Orakai backend acts as an orchestrator. It does not perform inference

or finalization itself, preserving decentralization. Instead, it handles off-chain

coordination tasks like worker job distribution, storage layer writing, and reputation

tracking.

Responsibilities

Persist query metadata (timestamp, prompt, consumer address)

Register new worker and aggregator nodes

Route new jobs to workers via event listening

Store all responses in decentralized storage (e.g., Storacha)

Maintain basic usage analytics

Expose REST APIs to frontend for query introspection

Why This Matters

This backend is necessary to bridge real-world HTTP and compute environments with the

constraints of EVM smart contracts. However, it is stateless with respect to trust

decisions.

6. Worker Node

Overview

The worker is a decentralized agent that performs inference off-chain using a

configured LLM provider (e.g., OpenRouter.ai). It is a TypeScript or Go service with

local inference and signing logic.

Workflow

1. Subscribes to new job notifications via backend/event indexer

2. Verifies selection via Randamu commitment

3. Fetches prompt and task type

4. Sends query to LLM provider (translate("Hello", "English", "French"))

5. Receives result ("Bonjour")

6. Uploads result + metadata to Storacha

7. Signs result hash with its private key

8. Submits result to Orakai smart contract

Cryptographic Proofs

const hash = keccak256(result + queryId);

const signature = wallet.sign(hash);

Why This Matters

Workers provide decentralized inference, and quorum consensus ensures that adversarial

or faulty workers are ignored.

7. Aggregator Node

Overview

The aggregator is a specialized node that monitors query responses and finalizes them

based on quorum. In future versions, this will be a DAO-governed or zk-proofed

process.

Responsibilities

Watch submitWorkerResponse events

Compare result hashes from workers

Identify majority-agreed result

Submit final result to Orakai contract via finalizeResult(queryId, hash)

Incentive Mechanism

Gas refunds for aggregation

Slashing of workers with deviating results

Reputation score adjustment

Why This Matters

Aggregators act as light validators, finalizing responses once consensus is observed

without introducing centralization risks.

8. ExampleConsumerContract: Language Translation

contract ExampleTranslator {

 address public orakaiAddress;

 mapping(bytes32 => string) public translations;

 constructor(address _orakai) {

 orakaiAddress = _orakai;

 }

 function requestTranslation(string calldata prompt) external {

 Orakai(orakaiAddress).createQuery(prompt, "translate_en_fr");

 }

 function onQueryFinalized(bytes32 queryId, string memory translatedText) external

{

 require(msg.sender == orakaiAddress);

 translations[queryId] = translatedText;

 }

}

9. Query Lifecycle Walkthrough: Translate "Hello" to

French

Step-by-Step:

1. User Input

User visits frontend, enters:

Prompt: "Translate 'Hello' to French"

Task Type: "translate_en_fr"

→ Clicks “Submit”

2. Frontend + Backend Coordination

Frontend signs user intent, sends to backend → Backend stores metadata and

emits job

3. On-chain Query Registration

Orakai.createQuery("Translate 'Hello' to French", "translate_en_fr") is called

4. Worker Selection via Randamu

Smart contract randomly selects 5 workers → Emits event

5. Worker Execution

Each worker:

Queries OpenRouter.ai

Receives "Bonjour"

Uploads to Storacha → Gets CID

Signs result hash

Calls submitWorkerResponse(queryId, hash, signature)

6. Aggregator Monitoring

Aggregator observes 3+ identical hashes (e.g., all workers return "Bonjour")

Calls finalizeResult(queryId, hash)

7. Smart Contract Finalization

Emits QueryFinalized with result

8. ExampleConsumer Receives Result

onQueryFinalized(queryId, "Bonjour") is triggered on ExampleTranslator

9. Storage

Final result is publicly available on-chain and via IPFS.

10. Security Assumptions

LLM queries are subjective → quorum reduces variance

Verifiable randomness (Randamu) prevents selection bias

Reputation-based slashing deters bad behavior

Aggregators are monitored → DAO governance ensures trust rotation

11. Future Work

zkML proof-of-inference

Aggregator staking + delegation model

Query NFTs (ownership, resale)

zk-SNARK backed worker reputation

Multi-chain relay compatibility (Polkadot, Cosmos)

Native OpenRouter fine-tuning

12. Conclusion

Orakai brings deterministic guarantees to probabilistic AI models. It bridges the gap

between blockchain and intelligent inference by offering a composable, trustless, and

open oracle for LLMs. With quorum-based validation, storage-backed transparency, and

decentralized incentives, Orakai empowers a new class of AI-native decentralized

applications.

Made by DarthBenro008

https://github.com/darthbenro008

